设为首页添加收藏

您好! 欢迎来到广东某某建材科技有限公司

微博
扫码关注官方微博
微信
扫码关注官方微信
电话:400-123-4567

您的位置: 主页 > 杏鑫资讯 > 行业动态
行业动态

PyTorch中 梯度(gradient)和优化器(optimizer)

发布日期:2024-09-09 来源: 网络 阅读量(

PyTorchoptimizer提供了多种优化方法,包括: 1. SGD(随机梯度下降):每次迭代随机选择一个样本进行梯度更新。 2. Adam(自适应矩估计):通过对梯度的一阶矩估计和二阶矩估计来自适应调整学习率。 3. Adagrad(自适应梯度算法):根据梯度历史信息自适应地调整每个参数的学习率。 4. Adadelta:在Adagrad的基础上,引入了梯度历史信息的衰减系数来平衡不同时间步的梯度影响。 5. RMSprop:通过对梯度的二阶矩平均来自适应调整学习率。 6. LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno):基于牛顿法的优化算法,使用有限内存存储近似的二阶信息来更新参数。 7. Rprop(Resilient Backpropagation):基于梯度符号来更新权重,对于不同样本的梯度符号不同的情况,可以自适应地调整学习率。 8. SparseAdam:Adam的一种变体,适用于稀疏梯度,只更新非零梯度的参数。 9. ASGD(Averaged Stochastic Gradient Descent):随机梯度下降的一种变体,通过平均过去的梯度来减小梯度方差,达到更加平稳的优化效果。

平台注册入口